Pulmonary Diffusion and Pulmonary Circulation Flashcards Preview

Physiology > Pulmonary Diffusion and Pulmonary Circulation > Flashcards

Flashcards in Pulmonary Diffusion and Pulmonary Circulation Deck (45)
Loading flashcards...
1

how does steady state alveolar air for CO2 and O2 compare to steady state venous blood and arterial blood pressure?

PAO2 = 100 mmHg
PaO2 = 95 mmHg
PvO2 = 40 mmHg

PACO2 = 40 mmHg
PaCO2 = 40 mmHg
Pv = 46 mmHg

2

Henry's Law of Solubility
-what does alpha mean?

Ci = alphai * Pi where C = gas concentration in solution, alpha = solubility coefficient, and P = partial pressure of i
-this is only when liquid and gas phase are in equilibrium at a given temperature
-liquid pressure only from dissolved gases

3

Rick's Law of Diffusion
-what do D and Dl mean?

gas flow = (area/thickness) * D * (P1 - P2) where D = diffusion coefficient
-single most important is P gradient
-since Dl = (DA)/T, flow = Dl * (P1 - P2) where Dl = diffusion capacity of the lung

4

how does D relate to solubility and molecular weight?

diffusion coefficient = solubility / (square root MW)

5

is there hypoxemia and hypercapnea in hypoventilation and diffusion problems?

there is hypoxemia in both (O2 = 78 mmHg), but hypercapnea only in hypoventilation (CO2 = 55); diffusion problems have CO2 = 35 b/c CO2 is 20X more diffusable than O2

6

what is the regular transit time through a pulmonary capillary?

0.75 - 1.2 seconds, since t = V/Q = 75 mL / 100 mL/sec

7

how is the diffusion of O2, N2O, and CO along length of pulmonary capillary?

N2O has higher perfusion than O2, but both are quickly equilibrized within 0.1 sec
-transfer of N2O and O2 is perfusion-limited (more gas flow = more transfer)
CO has very low partial pressure and perfusion, b/c transfer is diffusion-limited
-doesn't reach equilibrium even after 0.75 seconds b/c affinity for Hb is 210 X that of O2

8

what happens if diffusion of O2 is abnormal?

O2 will not reach equilibrium until after the full 0.75 seconds of flow through capillaries

9

CO2 diffusion along pulmonary capillary

it seems like the inverse of O2 (b/c diffusing out of body)
-it equilibriates quickly through fibrotic tissue and fluids present in pulmonary edema
-slowed down by CO2 chemical reactions

10

what happens to PO2 during exercise-induced hypoxemia?

transit time is reduced to 0.25 seconds, since flow can increase 3x
-a normal person would still equilibrate capillary blood with alveolar gas, but if there is a diffusion problem, they would get hypoxemia during exercise (longer to equilibrate)

11

what happens to PO2 and DlCO at high altitudes?

inspiratory hypoxia and vasoconstriction reduces DlCO and slows the rate of equilibration

12

what is relation of pressure gradient (between alveolar and capillaries) and equilibration time?

the smaller the difference, the shorter time to equilibrate

13

what happens if you increase the BP in the pulmonary artery?

there is edema, which increases the thickness of the lung, which decreases flow and rate of diffusion, taking longer to equilibrate

14

equations to measure diffusion capacity

flow of gas in blood (comparable to diffusion capacity) = inspiratory flow - expiratory flow
-usually assume inspiratory flow = expiratory flow

15

how does DlO2 compare to DlCO?

DlO2 = 1.23 DlCO

16

how does body position influence DlCO?

DlCO is greater when supine than upright, b/c when you lie down, there is more blood to the lung

17

how does exercise influence DlCO?

increased blood to lung will increase blood flow and DlCO

18

how do lung diseases and dysfunction influence DlCO?

they decrease it
-loss of lung tissue from surgery will decrease area
-mismatch of ventilation to perfusion (such as airway obstruction, shut, alveolar dead space that increase thickness)
-pulmonary HTN with edema

19

differences between pulmonary and systemic circulations

-pulmonary is only vascular bed to receive entire CO, w/ low pressure
-lung volume changes during breathing affects pulmonary vascular resistance
-ischemic damage is rare in lung due to multiple supplies of O2
-minimal basal tone in pulmonary vessels (passive distension w/ increased P or Q w/o significant autoregulation)
-hypoxic vasoconstriction in lung

20

what are 3 O2 supplies to lung?

-bronchial circulation
-pulmonary circulation
-alveolar gas O2 supply

21

pulmonary circulation and pressures

pulmonary circulation is smaller than systemic circulation (thus "lesser" circulation)
-pulmonary BP are lower b/c pulmonary vascular resistance is 10x lower than TPR
-afterload of RV is less than LV, so right heart does less work than left

22

where is pulse pressure largest?

in the left ventricle

23

anatomic shunts

normal, left to left that's 1-2% of CO (up to 20% if obstruction)
-bronchial circulation starts at the base of the aorta, perfuses large airways, vessels, and nerves, then drains into bronchial vein and then pulmonary vein, thus bypassing the lungs
-responsible for the slight drop from 100 mmHg in alveoli to 95 mmHg in aorta

24

what do lymphatic vessels return excess fluid to? what are they regulated by?

returns it to circulation via caudal mediastinal lymph node and thoracic duct
-regulated by intrinsic propulsion, mechanical pumping during breathing, and sympathetic activity
--intrinsic propulsion can generate up to 20 mmHg if flow occluded

25

physiological shunt

sum of normal anatomic shunt (left to left) plus any pathological intrapulmonary right to left shut that occurs when airways are blocked, resulting in hypoxemia

26

pathologic shunt

right to left shunting of blood
-causes hypoxemia w/o hypercapnea
-if Qs = Qt, that means all blood is shunted, and there's no O2ation

27

features of pulmonary vessels
-wall thickness
-what kind of vessels they are
-what capillaries are surrounded by

-pulmonary arteries and veins are both thin-walled and highly distensible
-graduation of muscularity from muscular to partially muscular to nonmuscular with no distinct arterioles, and can be gas-exchanging (less than 1 mm) or non-exchanging (all larger)
-capillaries are surrounded by alveolar air, so external pressure is alveolar pressure that oscillates during breathing
-alveolar and extra-alveolar vessels have different mechanical properties, and are affected differently by changes in lung volume, but don't differ anatomically
-changes in lung volume during breathing also affect pulmonary vascular resistance

28

pulmonary blood pressure along vasculature
-what is average PBP, and what values make it pulmonary HTN or pulmonary edema

PBP is low, and dissipates gradually along vasculature
-PBP is 11-12 mmHg, compared to 93 mmHg of aorta
-over 20 mmHg is pulmonary HTN
-over 25 mmHg is pulmonary edema, resulting in diffusion problem b/c hydrostatic pressure is higher, forcing filtration

29

how is pulmonary arterial pressure measured?

a cardiac catheter called Swan Ganz is inserted in jugular, brachial, or femoral vein and advanced into pulmonary artery

30

what is pressure (LA)?

pulmonary wedge pressure obtained when catheter in pulmonary vasculature is inflated to occlude flow downstream

Decks in Physiology Class (60):